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The gauge invariance of the Dirac equation is reviewed and gauge-invariant 
operators are defined. The Hamiltonian is shown to be gauge dependent, and an 
energy operator is defined which is gauge invariant. Gauge-invariant operators 
corresponding to observables are shown to satisfy generalized Ehrenfest theo- 
rems. The time rate of change of the expectation value of the energy operator is 
equal to the expectation value of the power operator. The virial theorem is 
proved for a relativistic electron in a time-varying electromagnetic field. The 
conventional approach to probability amplitudes, using the eigenstates of the 
unperturbed Hamiltonian, is shown in general to be gauge dependent. A gauge- 
invariant procedure for probability amplitudes is given, in which eigenstates of 
the energy operator are used. The two methods are compared by applying them 
to an electron in a zero electromagnetic field in an arbitrary gauge. 

1. I N T R O D U C T I O N  

The source of these complications is that although our total Hamiltonian is gauge- 
invariant, we split it into two parts, H 0 and V, which are not separately gauge-invariant, and 
then assume that V is small. It is not very satisfactory to have a whole perturbation technique 
based on the assumption of the smallness of a quantity.., which is not gauge invariant (Dirac, 
1965). 

Dirac is here referring to quantum electrodynamics, where the total 
H a m i l t o n i a n  is for  bo th  m a t t e r  a n d  q u a n t i z e d  rad ia t ion .  The  total  H a m i l t o -  
n i a n  is also the total  energy  of  the system,  which is a g a u g e - i n v a r i a n t  
q u a n t i t y  (up  to a cons tan t ) .  The  c o mp l i ca t i ons  to which  he  refers a re  those  
c o n n e c t e d  wi th  a gauge - inva r i an t  fo rm of  q u a n t u m  e l ec t rodynam ics  he 
deve loped  (Dirac ,  1955) which  " i s  m o r e  compl i ca t ed  as m a n y  n e w  te rms  
a p p e a r  in  the  e q u a t i o n s . . .  (whose)  phys ica l  s igni f icance  is n o t  c lear"  (Di rac ,  
1965). Di rac  (1950, 1952) has  also explored  gauge i nva r i ance  in  o the r  
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papers. Without mentioning its relationship with the gauge problem, IDirac 
(1958) proved the independence of the Kramers-Heisenberg formula from 
the form of the interaction in the electric dipole approximation (E-r o r  A-p 
plus A 2, constants omitted). 

Dirac is so dissatisfied with the divergences of quantum elec- 
trodynamics and the renormalization scheme for handling them, that h_e has 
explored the possibility of giving up gauge invariance if that would solve the 
difficulties. He believes the reason that quantum electrodynamics gives 
infinities is that the wrong classical theory is being quantized. A new 
classical electron theory was proposed (Dirac, 1951) in which the superflu- 
ous variables related to the gauge freedom of the electromagnetic potentials 
acquire physical significance and describe electric charges. The simplest 
relativistically invariant condition on the potentials A~A~=k 2 is used, 
where k is a universal physical constant (which turns out to be m/e).  This 
assumption is the only one he needs to get classical electrons appearing in 
the theory. Although his program was not completed, since the classical 
theory was not quantized, it shows how strongly Dirac abhors the diver- 
gences in quantum electrodynamics (see also Dirac, 1970). 

This paper does not deal with the truly fundamental question o f  di- 
vergences or even the question of gauge transformations in quantum elec- 
trodynamics. Instead it deals with the more modest problem of an electron 
in a hydrogen atom in the presence of an external classical electromagnetic 
field. The ideas of manifest gauge invariance of the Dirac equation are 
reviewed. In particular, the gauge invariance of the probability amplitude 
for finding the electron in an energy eigenstate is considered, to which the 
quotation at the beginning is als0 appropriate. 

Yang (1976) developed a manifestly gauge-invariant formulation of 
nonrelativistic quantum mechanics (Kobe and Smirl, 1978). He observed 
that the Hamiltonian for a particle in an external classical time-dependent 
electromagnetic field is gauge dependent, and cannot be the energy. The 
energy operator, which is manifestly gauge invariant, is defined to b e  the 
sum of the kinetic and potential energies. The usual expansion coefficients 
in quantum mechanics are in general gauge dependent, and cannot be 
interpreted as probability amplitudes. Yang (1976) defines gauge-invariant 
probability amplitudes by using eigenstates of the energy operator (Cohen- 
Tannoudji et al., 1977). 

Most of the ideas of gauge invariance in the nonrelativistic case can  be 
applied in a straightforward manner to the relativistic case. The role of 
gauge invariance in the reduction of the Dirac equation for an electron in a 
time-dependent electromagnetic field to the corresponding Pauli equation 
using the Foldy-Wouthuysen transformation has been discussed in a previ- 
ous paper (Kobe and Yang, 1980) and is not reviewed here (Yang, 1982). 
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In Section 2 the form invariance of the Dirac equation under gauge 
transformations is reviewed. The gauge invariance of operators is discussed 
in Section 3. Ehrenfest's theorem is applied to several operators of physical 
interest, including the energy operator, in Section 4. The conventional 
approach to probability amplitudes is shown to be in general gauge depen- 
dent in Section 5. Gauge-invariant probability amplitudes are discussed in 
Section 6. In Section 7 the conventional and gauge-invariant formulations 
are applied to the case of an electron in a zero electromagnetic field. A 
comparison of the conventional and gauge-invariant probability amplitudes 
is made in Section 8, and it is shown under what conditions they agree. 
Finally, the conclusions are given in Section 9. 

2. GAUGE INVARIANCE OF THE DIRAC EQUATION 

The gauge invariance of the Dirac equation (Rose, 1961) is proved in 
the same way as the gauge invariance of the Schr/3dinger equation (Bohm, 
1951). However, to review the concepts and establish the notation, the gauge 
invariance of the Dirac equation is proved here. 

The Dirac Hamiltonian for a single particle of charge q and mass m in 
an external classical electromagnetic radiation field characterized by the 
four-potential A ~' = (A °, A l, A 2, A 3) : (A 0, -- AI, -- A2, - A3) is 

H( A t') = cot. ( p -  qA / c )  + flmc 2 + V +  qA ° (1) 

where p = - - i h v  is the momentum operator and A = (A I, A 2, A 3) (Dirac, 
1928a, 1928b; Bjorken and Drell, 1964). The external potential energy of the 
particle is V. For example, for an electron in a hydrogen atom, the potential 
energy V is the Coulomb potential between the proton and the electron. 
Potential energy is a nonrelativistic concept, so the presence of V destroys 
the Lorentz invariance of the theory. If the potential energy V were zero, 
however, the theory would be Lorentz invariant (Sakurai, 1967). The 
matrices a = (a 1, a 2, a 3) and fl satisfy the anticommutation relations 

(et i, ct j } = 2t$ ij, (tx i, fl} = 0 (2) 

and/~2 = 1. The Dirac equation in its Hamiltonian form is (Feynman, 1962) 

H( A~' )~b = ih O~p/Ot (3) 

which has the same form as the Schrrdinger equation. 
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A gauge transformation on the spinor wave function is (Rose, 1961) 

~ ' =  exp(iqA / h c )  ~ (4) 

where A = A(x) is a differentiable function of the space-time coordinates 
x = x" = (x °, x l, x 2, x 3) and x ° = ct. Under the transformation in equation 
(4) the Dirac equation in equation (3) becomes (Rose, 1961) 

H(A'~)~k ' =  ih o~'/at (5) 

which has the same form as equation (3). The new potentials in equation (5) 
are  

A'~= A . - a . A  (6) 

where a~ = o/ax ~, which is the usual gauge transformation of electromag- 
netism. The term "gauge invariant" applied to the Dirac equation means  its 
form invariance under gauge transformations on both the wave function 
and the potentials as shown in equation (5). 

The electromagnetic field strength tensor F~, is obtained from the 
potential A~, by 

F~. = I).A, -- a,A. (7) 

This equation is invariant under the gauge transformation in equation (6) on 
the potential. 

3. GAUGE INVARIANCE OF OPERATORS 

For an operator to correspond to an observable, it must be Hermitian 
(Dirac, 1958). It must also be gauge invariant, so that the same expectation 
value is obtained in all gauges (Kobe and Smirl, 1978; Kobe and Y'ang, 
1980). For an operator 0(A ~') which may depend on the potential, the gauge 
invariance of expectation values is 

- -  (8) 

i.e., the same value is obtained in the new gauge when the potentials in  the 
operator are replaced by the new potentials and the expectation value is 
taken with respect to the new wave function. Since the wave function ~b' is 
defined by equation (4), we can write the left-hand side of equation (8) as 

(9) 
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where the operator 0' is the unitarily transformed operator 

O'( A ~ ) = exp( iqA / hc )O( A~ )exp( - iqA / hc ) (10) 

We shall call the unitary transformation in equation (10) a "gauge transfor- 
mation on the operator." Comparing equations (8) and (9) with each other, 
we see that the operator must satisfy 

O'(A~)=O(A '~) (11) 

in order to have a gauge-invariant expectation value. In other words, a 
gauge transformation on the operator induces a gauge transformation on 
the potentials on which the operator depends. Equation (11) says that the 
operator 0 corresponding to an observable must be form invariant under 
gauge transformations (Kobe and Yang, 1980). 

As an example of a gauge-invariant operator consider the kinetic 
four-momentum operator ~r~ = p~ + qA~/c where p~ = - ih O/Ox ~ = -- ih a~. 
Under a gauge transformation it transforms as 

= ( + q A / c ) ' =  + qA' l¢ = 9; (12) 

Equation (12) satisfies equation (11) so the kinetic four-momentum is a 
gauge-invariant operator. The canonical four-momentum operator p~, alone 
is not a gauge-invariant operator, since its expectation value depends on the 
gauge or phase factor of the wave function (Cohen-Tannoudji et al., 1977). 

The Hamiltonian in equation (1) is not a gauge-invariant operator, 
since 

H'(A ~) = H(A'V) + q OoA (13) 

Because the scalar potential A ° is not transformed under the unitary 
transformation, the Hamiltonian is not form invariant under gauge transfor- 
mations. Its transformation properties are, however, such that the Dirac 
equation in equation (3) is form invariant. 

Since the scalar potential causes the Hamiltonian to be gauge depen- 
dent, we shall define an energy operator (Kobe and Yang, 1980) 

E(Ai)  = cai(pi + qAi /c)  + fl mc2 + V (14)  

where A i = - A i (i = 1, 2, 3) and a sum over the repeated index i from 1 to 3 
is implied. The energy operator in equation (14) is the Hamiltonian H(A ~) 
from which the scalar potential term qA ° has been subtracted. This operator 
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is gauge invariant, 

E'(Ai) = E(A;) (15) 

which satisfies equation (11). We shall see in the next section that the 
operator in equation (14) is indeed the energy operator, since the time rate 
of change of its expectation value is equal to the power supplied by- the 
external field. 

4. EHRENFEST'S THEOREM 

In this section Ehrenfest's theorem and some of its generalizations are 
presented. Ehrenfest's theorem (Yang, 1976) is important because it shows 
the correspondence between quantum and classical theory. It also aids in 
the interpretation of quantum theory. In Ehrenfest's theorem, the time rate 
of change of the expectation value of an operator corresponding t o  an 
observable is shown to be equal to the expectation value of another operator 
corresponding to another observable. The operators considered here in 
Ehrenfest's theorem are the displacement, kinetic momentum, total angular 
momentum, and energy. The first three operators have been considered by 
Feynman (1962) in terms of their Heisenberg equations of motion. The 
virial theorem is also proved for a particle in time-varying electromagnetic 
fields. 

Consider first the displacement operator r. The time rate of change of 
its expectation value is 

d<*lr )/dt = (q l vq4  (16) 

which gives the velocity operator v. If the Dirac equation in equation (3) is 
used for the time derivative of the wave functions in equation (16), the 
velocity operator is 

v = c a  (17) 

which is a well-known result (Sakurai, 1967). 
Consider the kinetic three-momentum operator ~r; = ih a t - qA~/c  ( i = 

1,2, 3). The time rate of change of its expectation value is 

d @ l ~ r q ~ ) / d t  ---@ I F~)  (18) 

where F is the quantum mechanical force operator. If the Dirac equation in 
equation (3) is used for the time rate of change of the wave function in 
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equation (18), the force operator is 

F =  - V V +  q r +  ( q / c ) v X B  (19) 

where v is the velocity operator in equation (17) which commutes with the 
magnetic induction vector B, and E is the electric field. 

The time rate of change of the average total angular momentum J is 

d( tk lJ~) /d t  = <~,IrXF~p) (20) 

The operator rXF,  where F is the force operator in equation (19), is the 
quantum mechanical torque operator. The total angular momentum opera- 
tor J is 

a=L+S  (21) 

where L = r ×  ~t is the orbital angular momentum and ~r is the kinetic 
three-momentum in equation (12). The intrinsic angular momentum or spin 
S is defined as S i = ( - i h / 2 ) a j a  k, where (/jk) is a cyclic permutation of 
(1,2,3). 

The time rate of change of the average energy is 

d(~pIE(A i )~>/d t  = (~IP~> (22) 

where E(A,) is the energy operator in equation (14). The quantum mechani- 
cal power operator P is defined as (Yang, 1976; Kobe and Yang, 1980) 

P = q v - E  (23) 

where v is the velocity operator in equation (17). Equation (22) verifies the 
claim made at the end of Section 3 that E(Ai) is the energy operator 
because the time rate of change of its expectation value is equal to the 
average power supplied to the electron by the external electromagnetic field. 

The virial theorem for a relativistic electron in a time-dependent 
electromagnetic field can also be considered along with the other generaliza- 
tions of Ehrenfest's theorem. The virial theorem for an electron in a 
time-dependent electromagnetic field has the same form as for static fields 
(Rose and Welton, 1952; Schectman and Good, 1956). The operator consid- 
ered is the virial r. ¢t, where ¢t is the kinetic three-momentum in equation 
(12). The time rate of change of the expectation value of the virial is 

d<~b ]r-~r~b)/dt = <~b I ( r - F +  v-¢t)~b> (24) 

The operator v-¢t = ca-or, which in the classical case is twice the kinetic 
energy. In the relativistic case there is of course a distinction between the 
velocity operator ca in equation (17) and ~/m.  
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5. CONVENTIONAL PROCEDURE FOR PROBABILITY 
AMPLITUDES 

All quantities that can in principle be measured must be gauge in- 
variant. This principle means that the probability that a system is in a given 
state must also be gauge invariant. However, the conventional approach to 
probability amplitudes using the unperturbed Hamiltonian H 0 and  its 
eigenfunctions gives gauge-dependent amplitudes in general. In this section 
the conventional procedure is reviewed and criticized from the standpoint of 
gauge invariance (Yang, 1982). 

The conventional procedure for time-dependent problems is to write 
the Dirac equation in equation (3) as 

( H  o - qa .  A + qA ° } ~b = ih a f  / a t  (25) 

The unperturbed Dirac Hamiltonian, 

H o = cot.p-I-flmc 2 + V (26) 

satisfies the eigenvalue equation 

Hoq~,, = E,,% (27) 

where the eigenfunctions q,, form a complete set. 
In the conventional approach the amplitude 

a . ( t )  = (~bnlLp(t)) (28) 

is taken as the probability for finding the system in the state q~, at t ime t. 
Unless the electromagnetic field (and also the potentials) are zero at t ime t, 
equation (28) is not a probability amplitude for finding the system ian an 
energy eigenstate, since H 0 in equation (26) is not the same as the energy 
operator in equation (14). 

The equation satisfied by the amplitude in equation (28) can  be 
obtained by taking its time derivative, using equation (25) and the complete- 
ness of states {q'n} to give 

ihit,, - E,,a,, -- ~ (¢k,,I ( -  qot 'A + 71A°)q~r,,)am 
m 

(29) 

The exact solution to this equation with the specified initial conditions gives 
the amplitude in equation (28). 
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A gauge transformation on the Dirac equation gives equation (5). If 
someone follows the previous procedure in the new gauge, the amplitude for 
finding the system in the state ~n is 

a ; ( t ) = ( O n l @ ' ( t ) )  (30) 

From equation (4) this amplitude can be written as 

a',( t)  = (q~nlexp( iqA/hc)+( t ) )  (31) 

Equation (31) is not the same as equation (28) because A is in general a 
function of both the space and time. Therefore, in general 

]G(t)]2~=la~(t)!  z (32) 

The amplitude a n cannot in general be interpreted as a probability ampli- 
tude for finding the system in an energy eigenstate because its absolute 
value squared is not gauge invariant. A probability must of course be gauge 
invariant. If A in equation (31) depended on the time only, the equality 
would hold in equation (32), but this case is not general. 

The equation which equation (30) satisfies is obtained by taking its 
time derivative, which gives in a manner similar to equation (29) 

ihd; - Ena' ~ = • (q~n [ ( -  qa -A '+  qA'°)epm)a" 
m 

(33) 

If this equation were solved exactly with the appropriate initial conditions, 
we would obtain equation (30). 

The objection may be raised (Epstein, 1979) that it is not ~n that should 
be used in equation (30), but the state 

ep'~ = exp( iqA / hc )q~ n (34) 

Equation (34) is an eigenstate of H~, 

tt ,; = (35)  

where H~ is the unitarily transformed H 0. The unitary transformation in 
equation (10) on H 0 gives 

H6 = ca .  ( p -  q v A / c )  + flmc 2 + V (36) 

If the eigenstate of H6 in equation (34) were used in equation (30) instead of 
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eigenstates of H 0, the inner product would be 

a,( t )=(q~'( t ) l~ ' ( t ) )  (37) 

The phase factors on both functions in equation (37) cancel, which gives a,  
in equation (28). However, the operator H 0 is not form invariant under a 
unitary transformation, since H; in equation (36) does not have the same 
form as H 0 in equation (26). Therefore the operator H o is not gauge 
invariant in the sense discussed in Section 3, because it involves the 
gauge-dependent canonical momentum p. 

Another way of looking at the problem is to consider two people who  
are each solving the same Dirac equation in a different gauge. If they each 
follow the same conventional procedure they will get different results for the 
probability that the system is in the state q~, as equation (32) shows. If they 
communicate with each other, they can obtain the gauge function which 
connects their potentials and wave functions. Then the first could tell the 
second to transform his unperturbed Hamiltonian so that the second would 
agree with the first and get l a . ( t ) l  z for the probability that the system is  in 
the state q~,. On the other hand, the second could tell the first to transform 
his unperturbed Hamiltonian, so that the first would agree with the second 
and get la' .(t)l  z for the probability that the system is in the state q~,. W ho  
would be correct? Neither would be, since in general neither I a, ] 2 nor ] a ', ] 2 
is the probability that the system is in an energy eigenstate. 

In the next section, a manifestly gauge-invariant procedure is given for 
obtaining the probability that the system is in an energy eigenstate. 

6. GAUGE INVARIANCE OF PROBABILITIES 

Because of the gauge dependence of the conventional procedure dis- 
cussed in the last section, it is important to obtain a manifestly gauge- 
invariant procedure for obtaining probability amplitudes (Yang, 19"76; 
Kobe and Smirl, 1978). The reason the amplitudes in equations (28) and  
(30) are not probability amplitudes is that H 0 is not a gauge-invariant 
operator. In order to have a manifestly gauge-invariant procedure, only 
gauge-invariant operators should be used (Schwinger, 1951). 

If we want to know the probability that the electron is in an energy 
eigenstate, it is necessary to use the eigenstates of the energy operator E(Ai)  
in equation (14). The energy operator satisfies the eigenvalue equation 
(Kobe and Yang, 1980) 

= ( 3 8 )  
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where ~b. is the energy eigenstate and e. is the energy eigenvalue. Since the 
vector potential A~ depends on the time, the eigenstates ~. and eigenvalues 
e. also depend on the time as a parameter. 

The probability amplitude at the time t that the electron is in an 
eigenstate of the energy operator is 

c~( t )=(~( t ) l~ ( t ) )  (39) 

By differentiating equation (39), using the Dirac equation in equation (3), 
and using the completeness of the states (+.}, we can show that the 
amplitude in equation (39) satisfies the equation 

ih . - = Z I c 0 m) (4o) 
m 

The operator ~r 0 = -  ihO o +qAo/C is the zero component of the kinetic 
four-momentum in equation (12). The exact solution of equation (40) with 
the specified initial conditions gives equation (39). 

Equations (38)-(40) are all manifestly gauge invariant. They retain the 
same form if A ~, ~, and ~k, are replaced by A '~, ~b', and ~k~, respectively, 
where ~k~ is defined as 

~p" = exp( iqA / hc)~. (41) 

which is the same transformation as for ~p in equation (4). The eigenvalue e, 
in equation (38) and the amplitude in equation (39) are unchanged under 
the gauge transformations, and are thus gauge invariant. The matrix element 
in equation (40) is also gauge invariant 

(42) 

where ~rd is given in equation (12). 
The amplitude in equation (39) is unchanged under gauge transforma- 

tions because both ~k, and ~k transform in the same way, so 

c. = (43) 

Since ~p" and ~. are gauge equivalent, they describe the same state. An 
eigenstate of the energy operator is denoted by [t~n], the class of all wave 
functions that are gauge equivalent to ~k,- In other words, ~k~ [q'.], if 
~=exp(iqA/hc)q~., for some real function A. The probability that the 
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electron is in the state [~ ]  of the energy operator at the time t is thus 

e . - - I c . ( t ) l  2 (44) 

where c~(t) is given in equations (39) and (43). The gauge-invariant proce- 
dure gives the same probability in all gauges, since it is based on using 
gauge-invariant operators. 

7. DIRAC EQUATION WITH A ZERO ELECTROMAGNETIC FIELD 

As an example of the conventional procedure and the gauge-invariant 
procedure, we shall apply each to the Dirac equation where the electromag- 
netic field is zero. A zero electromagnetic field can be described b y  a 
nonzero potential which is the four-gradient of a scalar function. If there is 
no electromagnetic field, we know intuitively that there should b e  no 
transitions between states. The conventional approach predicts transitions 
between unperturbed states, unless the potentials are chosen to be zero. The 
gauge-invariant procedure predicts no transitions in any gauge. 

If the electromagnetic field strength tensor in equation (7) is zero 

F~, = 0  (45) 

the potential A, must be of the form 

A~ = 3~A (46) 

If the gauge transformation in equation (6) is made using equation (46) as 
the old potential, the new potential is 

t A~ = 0  (47) 

The conventional amplitude a.  in equation (28) satisfies equation (29). 
With the potential in equation (46), equation (29) becomes 

ihg~n - E.an = X (q'. I (q a' 0iA + q 00A)~bm)a m 
m 

(48) 

The quantity in parentheses on the right-hand side of equation (48) is a 
"pseudointeraction," since there is no electromagnetic field present. How-  
ever, this pseudointeraction couples different states ~n. Because of this 
coupling, we shall show that [a.(t)l 2 depends on the time. Since there is no 
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electromagnetic field, the probability that the system is in a given state 
cannot depend on the time. 

If we use the zero potential in equation (47) in equation (33) for the 
amplitude a'n, we obtain 

ihd', -- Ena' n = 0 (49) 

The exact solution of this equation is 

a" ( t ) = e x p ( -  iEnt / h )a'n(O ) (50) 

the squared modulus of which is 

}a~(t)12=la~(O)l z (51) 

If the probability of being in the state ~n at time zero is l a'n(0)] 2, then the 
probability of finding the system in the same state at a later time t is the 
same if we use the zero potential. 

The relationship between the amplitudes a n and a~, is given in equation 
(31). This equation can be rewritten to give 

an(t ) = ~ (ffnlexp(-- iqA /hc)eo,.)a',.(t) 
m 

(52) 

where A = A(x) is an arbitrary differentiable function of space and time. 
Therefore if l a'(t)[ z is constant in time, [a,(t)[ 2 in general is not constant 
in time, unless A is a function of the time only. If the system is prepared in 
the state ~n at time zero, the pseudointeraction in equation (48) causes the 
system to change to other states at later times. It is only when the potential 
is chosen to be zero (or the scalar potential is a function of the time only), 
that the conventional procedure predicts that the state probabilities are 
constants in time when no field is present. Thus the conventional procedure 
is gauge dependent. The gauge which gives the correct results when no 
electromagnetic field is present is the one in which the potential is zero (or 
the scalar potential is a function of the time only). This choice of potential is 
called the "preferential gauge" by Leubner and Zoller (1980). The use of the 
preferential gauge when no electromagnetic field is present is an unwritten 
rule of quantum mechanics. 

On the other hand, the gauge-invariant procedure in Section 6 predicts 
that in all gauges the probability of finding the system in a given energy 
eigenstate is a constant if there is no electromagnetic field. The matrix 
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element in equation (40) for the potential in equation (46) is 

(q,~l(-ihcOo+qOoA)q,m)=(q~2l(-ihcOo)qJ;.)=O (53) 

where if" is related to ~n by equation (41). When the potential is zero as in 
equation (47), the energy operator in equation (14) reduces to Ho,  the 
unperturbed Hamiltonian in equation (26), and the energy eigenvalue 
equation in equation (38) reduces to the unperturbed eigenvalue equation in 
equation (27). Thus the energy eigenvalues e~ = E~ and eigenstates ~b" : q~,, 
which are time independent. The time derivative ~0 acting on q / i n  equation 
(53) thus gives zero. 

Since the matrix element in equation (40) vanishes, the equation 
becomes 

ihd~ - E~c n = 0 (54) 

which has the solution 

cn(t) = exp( - - iE j /h )c , (O)  (55) 

The squared modulus of equation (55) gives the probability that the system 
is in the energy eigenstate n (or [~bn]) at time t, 

en( t ) : l cn ( t ) lE= lcn(O) l  2 (56) 

so that Pn(t) is a constant. Equation (43) guarantees that this same result is 
obtained in all gauges. If the system is prepared in the state n it will s tay in 
the state n for all time if the electromagnetic field is zero. Since the 
electromagnetic field is classical, this result agrees with our intuition. 

8. C O M P A R I S O N  OF THE GAUGE-INVARIANT AND 
CONVENTIONAL AMPLITUDES 

If the conventional amplitudes are in general gauge dependent, why 
does the conventional approach often work in practice? This question was 
answered by Leubner and Zoller (1980) and by Yang (1981). When the 
potential is switched on at some time and off at some subsequent time, the 
energy operator is equal to the unperturbed Hamiltonian when the potential 
is zero. The conventional probability amplitude agrees with the gauge- 
invariant probability amplitude calculated from the same potential when the 
potential is zero. The sudden switching on or off of the potential can cause a 
delta function electric field which must be taken into account in the 
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gauge-invariant procedure. However, if adiabatic switching of the potential 
is used, there is no delta function contribution to the electric field. For 
scattering problems the potential is switched on and off adiabatically, and 
only the probability per unit time that a transition has taken place after an 
infinite time is required to calculate the cross section. In this case the 
conventional and the gauge-invariant formulations agree. 

The four-potential can be chosen to be 

a.(x) = O(T+ t)O(T- t)A~(x) (57) 

for T >  0, where A~(x) is an everywhere differentiable function. The unit 
step function O(t) is one for positive argument and zero for nonpositive 
argument. When this potential is used in Section 5, the quantity [a.(t)[ 2 
does not depend on the time for t < - T ,  t > T, when the electromagnetic 
field and the potential are both zero. The energy operator in equation (14) is 

E( ai) = H o f o r t <  - T, t > T (58) 

so that equation (38) reduces to equation (27). The eigenfunctions q,n(t) and 
eigenvalues en(t) in equation (38) then become 

~p.(t) = ~., e.(t) = E. f o r t <  - T ,  t > T  (59) 

The amplitude c.(t) in equation (39) becomes 

c.(t)=(epnlqJ(t)} f o r t <  - T ,  t > T  (60) 

which is the same as for a.  in equation (28). Therefore in this case 

c . ( t )=a . ( t )  f o r t <  - T ,  t > T  (61) 

The "electromagnetic field" f~. is calculated by using the potential in 
equation (57) in equation (7), which gives 

f~. =O(T + t)O(T-t)F~. 

+ c - ' {8 (T+ t ) -  8 ( T -  t)) (8~oA~ -- 8.oA~) (62) 

The electromagnetic field strength F~. is defined in equation (7). The 
"electromagnetic field" f~. depends on the gauge because a~, in equation (57) 
is not a proper potential like A~,. If a gauge transformation in equation (6) is 
made on A~, in equation (57) to give A~, equation (62) would have 8~,0A" - 
8.0A~, as the coefficient of the delta functions. Thus the potential in 
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equation (57) does not in general describe a realistic electromagnetic field 
because of the delta function terms in equation (62). 

If the potential A, satisfies 

A . ( r ,  - T ) = A~(r ,  T ) = O (63) 

for all /~, then the delta function terms in equation (62) vanish. I f  in 
addition, 

F~.(r, - T) = F~(r, T) = 0 (64) 

then the electromagnetic field is continuous. When the potential and  the 
field satisfy equations (63) and (64), respectively, then the equality in 
equation (61) holds for a realistic situation in which the electromag~netic 
field F~ is switched on at time - T +  e and switched off at time T'--e,  
where e--, 0. 

When adiabatic switching is used, the potential and electromagnetic 
field are assumed to satisfy equations (63) and (64). In addition the 
potential and field are assumed to be switched on "slowly" after time - T  
and switched off "slowly" before time T. The limit as T approaches infinity 
can be taken at the appropriate place in the calculation of cross sections. 
The cross sections obtained by the conventional procedure and the gauge- 
invariant procedure are the same because of equation (61). The equality is 
valid in all orders of perturbation theory. 

9. CONCLUSION 

The gauge invariance of the Dirac equation for an electron in  an 
external classical electromagnetic field is reviewed in this paper. In order  to 
ensure manifest gauge invariance, gauge-invariant operators are defined. 
The energy operator, not the unperturbed Hamiltonian, is used to obtain 
manifestly gauge-invariant probability amplitudes. The conventional proce- 
dure, based on the unperturbed Hamiltonian, gives gauge-dependent proba- 
bility amplitudes in general. Both the gauge-invariant and the conventional 
approaches are applied to the special case of a Dirac particle in a zero 
electromagnetic field. The conventional approach predicts that if the poten- 
tial is the four-gradient of an arbitrary scalar function, the probability that 
the system is in a given state changes in time, even though the electromag- 
netic field is zero. On the other hand, the gauge-invariant formulation 
predicts that in all gauges the probability that the system is in a given state 
is a constant, which agrees with our intuition. 
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In many problems the adiabatic switching hypothesis is made, so that 
before the potential (and the field) is switched on and after the potential 
(and the field) is switched off, the gauge-invariant and conventional proba- 
bility amplitudes agree with each other (Leubner and Zoller, 1980). The 
adiabatic switching hypothesis is most often used in scattering problems so 
that cross sections calculated by the two approaches agree in all orders of 
perturbation theory. However, there are other effects, like the AC Stark 
shift, in which the field remains on while measurements are made. In the 
nonrelativistic case the conventional and gauge-invariant formulations give 
different AC Stark shifts (Kobe, 1982), and similar results would be 
obtained if the Dirac equation were used. In general, eigenstates of the 
energy operator are required to calculate probability amplitudes. When the 
energy operator is different from the unperturbed Hamiltonian, the gauge- 
invariant procedure must be used to calculate probability amplitudes. 

In the special case that the electric dipole approximation can be made 
for the hydrogen atom (i.e., the wavelength is long compared to the atomic 
dimensions and magnetic effects are negligible), the potentials can be 
chosen (Kobe, 1978) such that A ' =  0, A~ = -E(0 ,  t)-r, where E(0, t) is the 
electric field at the origin (at the atom). In this case the kinetic momentum 
reduces to the canonical momentum, and the energy operator reduces to the 
unperturbed Hamiltonian. The matrix element of the interaction operator in 
Equation (40) becomes (~,~1 cTr~,~) = (~nl ( - qE(0, t). r}q~m). If the unper- 
turbed Hamiltonian H 0 is used then - q E ( 0 ,  t ) . r  should be used as the 
interaction operator to obtain probability amplitudes (Yang, 1976; Kobe 
and Smirl, 1978). However, if the adiabatic switching hypothesis is used, the 
conventional and the gauge-invariant amplitudes are equal when the poten- 
tial (and field) is zero. Dirac (1958) gave a direct proof that in second-order 
perturbation theory for the quantized electromagnetic field in the electric 
dipole approximation the Kramers-Heisenberg formula calculated using 
- qE(0, t ) -r  and the one calculated using A(0, t)-p plus A 2 (constants 
omitted) are equal. 

In general the electromagnetic field can remain on during a measure- 
ment, so the energy operator and the unperturbed Hamiltonian differ. In 
this case, the gauge-invariant formulation should be used to ensure gauge- 
invariant results. 

ACKNOWLEDGMENTS 

I would like to thank Dr. K.-H. Yang for many helpful discussions on gauge invariance, 
for reading the manuscript and making helpful suggestions, and for his encouragement. This 
work was supported in part by a grant from the North Texas State University Faculty Research 
Fund. 



702 Kobe 

REFERENCES 

Bjorken, J. D., and Drell, S. (1964). Relativistic Quantum Mechanics, Chap. 1. McGraw-Hill, 
New York. 

Bohm, D. (1951). Quantum Theory, pp. 357-358, Prentice-Hall, New York. 
Cohen-Tannoudji, C., Diu, B., and Lalo~, F. (1977). Quantum Mechanics, pp. 315-328. John 

Wiley and Sons, New York. 
Dirac, P. A. M. (1928a). Proceedings of the Royal Society of London, A117, 610. 
Dirac, P. A. M. (1928b). Proceedings of the Royal Society of London, All8, 351. 
Dirac, P. A. M. (1950). Nuovo Cimento (Series 9), 7, 925. 
Dirac, P. A. M. (1951). Proceedings of the Royal Society of London, A209, 291. 
Dirac, P. A. M. (t952). Annales de l'Institut Henri Poincark, 13, I. 
Dirac, P. A. M. (1955). Canadian Journal of Physics, 33, 650. 
Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, 4th ed., pp. 244-248, pp. 34-37, 

Oxford University Press, London. 
Dirac, P. A. M. (1965). Physical Review, 139, B684. 
Dirac, P. A. M. (1970). Physics Today, April, 2.3, 29. 
Epstein, S. T. (1979). Chemical Physics Letters, 65, 417. 
Feynman, R. P. (1962). Quantum Etectrodynamics, pp. 34-55. W. A. Benjamin, Inc., New "York. 
Kobe, D. H. (1978). International Journal of Quantum Chemistry Symposium, 12, 73. 
Kobe, D. H. (1983). (to be published). 
Kobe, D. H., and Smirl, A. L. (1978). American Journal of Physics, 46, 624. 
Kobe, D. H., and Yang, K.-H. (1980). Journal of Physics A: Mathematical and General, 13, 

3171. 
Leubner, C., and Zoller, P. (1980). Journal of Physics B: Atomic and Molecular, 13, 3613. 
Rose, M. E., and Wehon, T. A. (1952). Physical Review, 86, 432. 
Rose, M. E. (1961). Relativistic Electron Theory, pp. 117-119. John Wiley and Sons, New "York. 
Sakurai, J. J. (1967). Advanced Quantum Mechanics, Chap. 3. Addison-Wesley, Reading, 

Massachusetts. 
Schectman, R. M., and Good, R. H., Jr. (1956). American Journal of Physics, 25, 219. 
Schwinger, J. (1951). Physical Review, 82, 664. 
Yang, K.-H. (1976). Annals of Physics, 1Ol, 62. 
Yang, K.-H. (1981). Physics Letters, 81A, 125. 
Yang, K.-H. (1982). Journal of Physics A: Mathematical and General, 1S, 437. 


